LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

B.Sc. DEGREE EXAMINATION – **PHYSICS**

FIRST SEMESTER – **APRIL 2023**

UPH 1501 - PROPERTIES OF MATTER AND ACOUSTICS

Date: 06-05-2023	Dept. No.	Max.: 100 Marks
Time: 01:00 PM - 04:00	PM L	

	SECTION A				
Ans	swer ALL the Questions				
1.	. Select the right choice		(5 x 1 = 5)		
a)	The SI unit of Young's Modulus.	K1	CO1		
	a) N/m^2 b) N/m^{-2} c) N/m^3 d) N/m	K1	COI		
b)	The viscosity of gases increases with				
	a) Increase in temperature b) Decrease in temperature	K1	CO1		
	c) Increase in volume d) Decrease in volume				
c)	Dancing of a small pieces of camphor on the surface of water is due to				
	a) Viscosity b) Surface tension c) Brownian motion	K1	CO1		
	d) Lifting force				
d)	Which of the following does not exhibit polarization				
	a) Longitudinal wave in a gas				
	b) Transverse wave in a gas	K1	CO1		
	c) Electromagnetic waves				
	d) None of the above				
e)	The speed of the wave is equal to the product of frequency and	K1	CO1		
	a) vibration b) amplitude c) wave length d) time period	K1	COI		
2.	Fill in the blanks	(5 x 1 =	$(5 \times 1 = 5)$		
a)	The density of mercury is	K1	CO1		
b)	In a CGS system, the kinematic viscosity is expressed in	K1	CO1		
c)	Bernoulli's theorem is applicable only forliquid	K1	CO1		
d)	Time period of simple pendulum inside the satellite orbiting earth is	K1	CO1		
e)	SONAR is the abbreviation of	K1	CO1		
3.	Match the following	(5 x 1 =	= 5)		
a)	Pressure - Hertz	K2	CO2		
b)	Bernoulli's theorem - Newton	K2	CO2		
c)	Viscosity - Pa	K2	CO2		

a)	d) Force - Conservation of energy			
e)	e) Frequency - Poiseiulle		K2 CO2	
4.	State True or False (5			
	If the temperature of the wire is increased, then the Young's modulus will decrease.	K2	CO2	
	Continuity equation based on the conservation of momentum			
		K2 K2	CO2 CO2	
			CO2	
	The intensity of sound depends on the ear of the listener	K2		
e)	The ultrasonic waves travel with a larger velocity than sound waves.	K2	K2 CO2	
	SECTION B		10 20)	
	er any TWO of the following	(2 x	$(2 \times 10 = 20)$	
	(a) Draw the stress- strain diagram of an elastic material (3 marks)	К3	CO2	
	(b) Derive an expression for bending moment of a beam. (7 marks)			
6.	With relevant theory, demonstrate Jaegar's method of finding surface tension of	K3	CO2	
	a liquid at different temperatures.			
7.	Define simple harmonic motion. Derive the differential equation describing K3		CO2	
	simple harmonic motion. Sketch it graphically.			
8.	State and explain Bernoulli's theorem, mention its application.	K3	CO2	
	SECTION C			
Answe	er any ONE of the following in 50 words	(2	x 10 = 20)	
9.	(a) Deduce an expression for the twisting couple of a cylinder fixed at one end.			
	(4 marks)			
	(b)A cylindrical wire of radius 1.8×10^{-4} m and length 4 m extends by 1.8×10^{-3}	K4	CO3	
	m under a load of 1 kg and twists by 1.2 radians when subjected to a total			
	torsional torque of 4 x 10 ⁻⁵ Nm at one end. Find the rigidity modulus. (6 marks)			
10.	Analyse the theory of excess pressure inside curved liquid surface for different special cases. K4		CO3	
			CO3	
11.	a) Define stationary waves and explain the properties of stationary longitudinal			
	waves. (6 marks)	K4	CO3	
	b) Distinguish between longitudinal and transverse waves. (4 marks)			
12.	Discuss how to design an auditorium with good acoustics.	K4	CO3	
l	SECTION D	l		
Answer any ONE of the following (1 x			20 = 20)	
13.	Summarize the three moduli of elasticity and Poisson's ratio. Obtain the	K5	CO4	
	relations connecting them.	NΣ	CU4	
14.	(a) Formulate Poiseuille's equation for the rate of flow of a liquid through a	late Poiseuille's equation for the rate of flow of a liquid through a		
	capillary tube. (12 marks)	K5	CO4	

	(b) Water flows through a horizontal tube of length 0.2 metre and internal radius 8.1×10^{-4} metre under a constant head of the liquid 0.2 metres high. In 12 minutes 8.64×10^{-4} m ³ of liquid comes out from the tube. Calculate the coefficient of viscosity of water. (The density of water = 1000 kg m^{-3} and $g = 9.8 \text{ m/s}^2$) (8 marks)			
Answer any ONE of the following (1 x 2		x 20 = 2	20 = 20)	
15.	a) Write interfacial surface tension. Discuss the experimental method to determine the			
	interfacial surface tension of water and liquid. (15 Marks)			
	(b) 50 drops of water falling down a tube of external radius 1.75 mm are collected under		CO5	
	oil of specific gravity 0.8. Determine the interfacial surface tension between water and			
	oil if the water collected weighs 6.175 g. (5 Marks)			
16.	16. Describe reverberation and derive Sabine's formula for reverberation time.		CO5	

&&&&&&&&&&